
Lattice: A Decentralized, Distributed Datastore

Computes, inc.

February 2018 �

Abstract

Lattice is a decentralized, distributed datastore that is used to build a distributed

work queue, ledger, and general-purpose datastore for the Computes mesh computer? .

The Lattice protocol allows authorized computers to self-organize into a mesh computer,

limited only by the number and power of the members. Lattice will intelligently allocate

work to the best members of the mesh, based on the requirements of the task.

Lattice is a layer on top of IPFS? , which provides a peer-to-peer distributed filesystem,

including a Merkle DAG? . Utilizing IPFS as a subsystem allows Lattice to greatly

benefit from the novel and essential features provided. Embracing the content addressed,

immutable nature of IPFS also allows Lattice to ensure data integrity and accuracy. Lattice

introduces the novel concepts: Grow Only Hash Object and the Hash Pointer Collaboration

Protocol, Distributed Trust System.

The Grow Only Hash Object (GOHO) is a conflict-free data structure? composed of

nodes in the IPFS Merkle DAG that can be resolved into a map-like structure. Members

of the Computes mesh can add data to a GOHO without resolving the entire dataset,

eliminating ine�cient use of computation and bandwidth.

The Hash Pointer Collaboration Protocol (HPCP) allows member nodes to query and

update other members about the latest root hash of their Merkle DAG. This allows e�cient

and fast synchronization of Merkle DAGs across peers.

The Distributed Trust System (DTS) allows members to earn and distribute trust by

verifying work done by other members.

�Lattice is a work in progress. New versions of this paper will appear at https://www.computes.com/
whitepapers. For comments or corrections, contact us at whitepaper@computes.com.

1



Contents

List of Figures

1 Introduction

There are numerous implementations of distributed work queues, nearly all of them require

a centralized queue manager to assign and distribute work. Lattice allows members of the

Computes mesh to collaborate peer-to-peer to assemble the queue, enqueue, dequeue, and

complete work. Lattice is highly resilient and allows members to leave and join at will.

1.1 Components

Lattice is constructed from base components inherited from IPFS along with three novel

components.

1. ??: Utilizing the IPFS DAG and CRDT techniques, members can easily modify a shared,

distributed map-like object without conflict and without accessing the entire object.

2. ??: Utilizing IPFS Pub/Sub members can query and share the latest Merkle Root of the

Grow Only Hash Object with other members.

3. ??: When a new Merkle Root is detected for a Grow Only Hash Object, a set of conditions

are evaluated, and new work may be enqueued into Lattice.

2 Grow Only Hash Object

A Grow Only Hash Object (GOHO) is a conflict-free replicated data type (CRDT) assembled

from leaf nodes of a Merkle DAG. The GOHO allows clients to determine if data duplication is

desired or not by setting a unique idempotentKey.

2.1 Grow Only Hash Object Protocol

(Append, Get, Set)

2



• Append(key, data, idempotentKey): Clients execute the Append protocol to add data to a

set. The key is a path-like structure that allows for setting subkeys of the map-like data

structure. The idempotentKey allows the client to prevent data duplication by using the

same key, data, idempotentKey triple.

• Get() æ data: Clients execute the Get protocol to resolve the Merkle DAG into a map-like

data structure.

• Set(key, data, idempotentKey): Clients execute the Set protocol to set a key to the data.

The key is a path-like structure that allows for setting subkeys of the map-like data

structure. The idempotentKey allows the client to prevent data duplication by using the

same key, data, idempotentKey triple.

2.2 Simple Example

Figure ?? shows a Grow Only Hash Object that has a new node appended to it. For a more

complex example, please see ??.

2.3 Merge Example

Figure ?? shows two clients C1 and C2 updating the same GOHO and merging the changes into

a new tree.

3 Hash Pointer Collaboration Protocol

The Hash Pointer Collaboration Protocol (HPCP) allows clients to track the latest Merkle Root

without synchronization across the Computes mesh. Knowledge of the Origin hash is required

to track changes. Clients will establish a shared communication channel to share updates and

queries. Clients need not know the most recent merkle root and can trust other peers to merge

the update with the published update.

3.1 Hash Pointer Collaboration Protocol

(Query, Update)

3



• Query(genesis): Clients execute the Query protocol to retrieve the latest merkle root from

other peers.

• Update(genesis, hash): Clients execute the Update protocol to notify peers of a new root

for a given origin.

3.2 Conflicts

When a Client receives a previously unknown hash from Update, it will merge the Merkle DAG

into its own copy. If the union of the two trees results in a unique dataset, the Client will

publish an Update with the new hash.

4 Distributed Trust System

The Distributed Trust System Protocol (DTS) allows members of the Computes Mesh to earn

and distribute trust by verifying work done by other members of the mesh.

4.1 Distributed Trust System Protocol

(Trust, Verify)

• Trust(memberId): Clients execute the Trust protocol to give trust to another member of

the Computes Mesh.

• Verify(memberId, task): Clients execute the Verify protocol to execute a given task again

and checking that the results match the previous run by a given member.

4



R1

S1 A1

Initial Grow Only Hash Object
R2

A2R1

S1 A1

Append an additional node

Figure 1: Simple Grow Only Hash Object Example

5



R1

S1 A1

Initial Grow Only Hash Object
R2

AxR1

S1 A1

C1 appends an additional node
R2

AyR1

S1 A1

C2 appends an additional node
R3

R1 Rxy

Ax AyS1 A1

Merged Changes

Figure 2: Grow Only Hash Object Merge Example

6


